3.1.6 \(\int \frac {a+a \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx\) [6]

Optimal. Leaf size=75 \[ -\frac {\sqrt {2} a \tanh ^{-1}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}} \]

[Out]

-a*arctanh(1/2*(e^(1/2)+cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*x+c))^(1/2))*2^(1/2)/d/e^(3/2)+2*a/d/e/(e*cot(d*x
+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3610, 3613, 214} \begin {gather*} \frac {2 a}{d e \sqrt {e \cot (c+d x)}}-\frac {\sqrt {2} a \tanh ^{-1}\left (\frac {\sqrt {e} \cot (c+d x)+\sqrt {e}}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d e^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Cot[c + d*x])/(e*Cot[c + d*x])^(3/2),x]

[Out]

-((Sqrt[2]*a*ArcTanh[(Sqrt[e] + Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/(d*e^(3/2))) + (2*a)/(d
*e*Sqrt[e*Cot[c + d*x]])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3613

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(d^2/f),
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {a+a \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx &=\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {\int \frac {a e-a e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{e^2}\\ &=\frac {2 a}{d e \sqrt {e \cot (c+d x)}}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{2 a^2 e^2-e x^2} \, dx,x,\frac {a e+a e \cot (c+d x)}{\sqrt {e \cot (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {2} a \tanh ^{-1}\left (\frac {\sqrt {e}+\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.26, size = 191, normalized size = 2.55 \begin {gather*} \frac {a \left (6 \sqrt {2} \text {ArcTan}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-6 \sqrt {2} \text {ArcTan}\left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+3 \sqrt {2} \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-3 \sqrt {2} \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )+24 \sqrt {\tan (c+d x)}+8 \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\tan ^2(c+d x)\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{12 d (e \cot (c+d x))^{3/2} \tan ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cot[c + d*x])/(e*Cot[c + d*x])^(3/2),x]

[Out]

(a*(6*Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 6*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + 3*Sq
rt[2]*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - 3*Sqrt[2]*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[
c + d*x]] + 24*Sqrt[Tan[c + d*x]] + 8*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2)))/(12
*d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(293\) vs. \(2(62)=124\).
time = 0.34, size = 294, normalized size = 3.92

method result size
derivativedivides \(-\frac {a \left (-\frac {2}{e \sqrt {e \cot \left (d x +c \right )}}+\frac {\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{e}\right )}{d}\) \(294\)
default \(-\frac {a \left (-\frac {2}{e \sqrt {e \cot \left (d x +c \right )}}+\frac {\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{e}\right )}{d}\) \(294\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*a*(-2/e/(e*cot(d*x+c))^(1/2)+2/e*(1/8/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^
(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/
2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))-1/8/(e^2)^(1/4)*
2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*c
ot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/
(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))))

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 78, normalized size = 1.04 \begin {gather*} -\frac {{\left ({\left (\sqrt {2} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a - 4 \, a \sqrt {\tan \left (d x + c\right )}\right )} e^{\left (-\frac {3}{2}\right )}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/2*((sqrt(2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*log(-sqrt(2)/sqrt(tan(d*x + c))
+ 1/tan(d*x + c) + 1))*a - 4*a*sqrt(tan(d*x + c)))*e^(-3/2)/d

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 154 vs. \(2 (56) = 112\).
time = 4.42, size = 154, normalized size = 2.05 \begin {gather*} \frac {4 \, a \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right ) + {\left (\sqrt {2} a \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2} a\right )} \log \left ({\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) - \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) - \sqrt {2}\right )} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} + 2 \, \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}{2 \, {\left (d \cos \left (2 \, d x + 2 \, c\right ) e^{\frac {3}{2}} + d e^{\frac {3}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/2*(4*a*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c) + (sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2
)*a)*log((sqrt(2)*cos(2*d*x + 2*c) - sqrt(2)*sin(2*d*x + 2*c) - sqrt(2))*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x
 + 2*c)) + 2*sin(2*d*x + 2*c) + 1))/(d*cos(2*d*x + 2*c)*e^(3/2) + d*e^(3/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a \left (\int \frac {1}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {\cot {\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))**(3/2),x)

[Out]

a*(Integral((e*cot(c + d*x))**(-3/2), x) + Integral(cot(c + d*x)/(e*cot(c + d*x))**(3/2), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a*cot(d*x + c) + a)/(e*cot(d*x + c))^(3/2), x)

________________________________________________________________________________________

Mupad [B]
time = 0.96, size = 84, normalized size = 1.12 \begin {gather*} \frac {2\,a}{d\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,\left (1+1{}\mathrm {i}\right )}{d\,e^{3/2}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,\left (-1+1{}\mathrm {i}\right )}{d\,e^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cot(c + d*x))/(e*cot(c + d*x))^(3/2),x)

[Out]

(2*a)/(d*e*(e*cot(c + d*x))^(1/2)) + ((-1)^(1/4)*a*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*(1 + 1i))
/(d*e^(3/2)) - ((-1)^(1/4)*a*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*(1 - 1i))/(d*e^(3/2))

________________________________________________________________________________________